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An integral method is developed to solve the two-dimensional Stokes problem with 
Neumann boundary conditions for multiply connected domains in which the inside 
hole area can shrink and disappear. The method is applied to simulate viscous 
sintering. In particular the sintering of glasses can be modelled as such, i.e. a viscous 
incompressible Newtonian volume flow driven solely by surface tension. A Boundary 
Element Method is applied to solve the integral equations of Stokes flow involved, 
and the time integration is carried out by a variable-step, variable-order Backward 
Differences Formulae method. The derived numerical algorithm is demonstrated for 
several arbitrarily shaped multiply connected sintering domains. In particular some 
cylindrical packings are considered. The latter simulations provide a justification for 
the use of ‘unit problems’ in the theory of sintering. 

1. Introduction 
Sintering is the process of bringing a granular compact of metals, ionic crystals, 

or glasses to such a high temperature that sufficient mobility is present to release the 
excess free energy of the surface of the powder, thereby joining the particles together. 
For a survey of the most important papers on sintering we refer to the book edited 
by S6miya & Moriyoshi (1990). 

In this paper, we consider the case of sintering glasses; here the material transport 
can be modelled as a viscous incompressible Newtonian volume flow, driven solely 
by surface tension (viscous sintering), i.e. the Stokes creeping flow equations hold. 
This sintering is in effect a three-dimensional problem. However, because of the 
complexity of such three-dimensional geometries, we restrict ourselves to simple 
shapes in two-dimensions only. 

A large part of the theory of sintering that has been developed thus far can 
be brought back to the investigation of the behaviour of so-called ‘unit problems’. 
Typical examples of such problems are the coalescence of two or an infinite line of 
both spheres and cylinders; these are the most simple unit problems. In the case of 
viscous sintering, more complicated unit problems have been developed, for example 
by Scherer (1984). These unit models are employed to describe the sintering of a 
complex structure like a glassy aerogel that can be used to produce a high-quality 
glass, cf. Kuiken (1990). Typically, a unit cell is determined in such an aerogel 
that represents the structure of the material considered. The sintering of this cell is 
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described by applying the unit problems. From the behaviour of this unit cell the 
properties of the sintering material considered are obtained. 

Recently, Hopper (1990, 1992) solved analytically two unit viscous sintering prob- 
lems, viz. the coalescence of two equal cylinders, cf. Hopper (1990), and the coa- 
lescence of a cylinder on a half-space, cf. Hopper (1992). He applied a conformal 
mapping technique to solve the Stokes equations in which the time evolution of 
the shape was described in terms of an equation of motion involving the mapping 
function. In Hopper (1990), the method is demonstrated for a number of regions 
which are bounded by a simple smooth closed curve. Hopper was also able to solve 
some problems for some semi-infinite regions. However, the examples in those papers 
show that his method depends on guessing a mapping function which initially has a 
built-in behaviour that describes the time evolution of the shape. The difficulty of 
finding such a mapping is illustrated in Hopper (1991): the only doubly connected 
domain he could solve was a circular disk with a circular hole centred at the origin. 
This problem can also be solved easily by describing the problem in cylindrical coor- 
dinates. Richardson (1992) was able to solve the unit problem of the coalescence of 
two unequal cylinders by applying Hopper’s method. 

The numerical simulation of the given initial geometry of a creeping Stokes flow is 
performed by successively solving the Stokes problem for that domain, and employing 
a time step to predict the next level geometry. The first simulation of a unit prob- 
lem of viscous sintering was carried out by Ross, Miller & Weatherly (1981). They 
considered the sintering of an infinite line of cylinders and performed this simulation 
by employing a Finite Element Method (FEM) to solve the Stokes equations. Jagota 
& Dawson (1988a, 1990) also applied the FEM for two axisymmetric problems: the 
sintering of two spheres and an infinite line of spheres. In Jagota & Dawson (1988b) 
they used the behaviour of the two coalescing spheres, to describe the densification of 
a powder compact. In that model, the particle packing is modelled as a framework of 
links between the touching spheres and the development of those links is described 
by considering the behaviour of the two coalescing spheres separately. 

Recently, Kuiken (1990) simulated viscous sintering problems for domains with 
moderately curved shapes; he used an integral representation in terms of the stream 
and vorticity function. A Boundary Element Method (BEM) was employed to 
solve the resulting equations. However, serious numerical problems occurred when 
simulating a geometry with a near cusp. Those problems were due to inaccuracies 
in computing the derivative of the curvature, which was required in that particular 
integral formulation. 

In earlier work, (van de Vorst & Mattheij 1991, 1992a,b; van de Vorst, Mattheij 
& Kuiken 1992) we reported solutions of the problem for arbitrarily shaped simply 
connected fluid regions. These simulations were performed by solving the Stokes 
problem by applying a BEM to the integral formulation in terms of boundary 
distributions of hydrodynamical single- and double-layer potentials. After solving the 
Stokes equations, the time step is carried out by a more sophisticated time integrator: 
a variable-step, variable-order Backward Differences Formulae (BDF) scheme. 

In all papers mentioned above, the simulation of viscous sintering problems was 
considered for simply connected domains only. In this paper, we consider the 
viscous sintering of two-dimensional arbitrarily shaped multiply connected domains. 
Therefore, we have to construct an integral formulation for this domain which has 
solutions with a certain type of singularity in order to model the shrinkage of holes 
inside the fluid. 

A review of recent numerical techniques for the solution of Stokes flows is given by 

G. A. L. van de Vorst 
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Weinbaum, Ganatos & Yan (1990). Here only the evolution of the fluid boundary is 
required. Therefore the Stokes problem is reformulated by an integral equation based 
on hydrodynamic single- and double-layer potentials. Tanzosh, Manga & Stone (1992) 
gave a review of the numerical solution of free creeping Stokes flows whereby this 
type of integral formulation is applied. The books of both Kim & Karrila (1991) 
and Pozrikidis (1992) extensively outline the theoretical derivation and the practical 
application of such integral formulations for a wide range of physical problems. 

Both of the latter books outline how the integral formulation for a simply connected 
domain can be extended to multiply connected domains. In order to derive a suitable 
solution from this integral, the equation has to be modified slightly. Besides rigid- 
body movements, which have to be prescribed also in the case of a simply connected 
domain, the boundary normal has to be prescribed too since it appears that this is 
an eigenfunction of the adjoint of the double-layer potential integral operator. In the 
above-mentioned books this is performed by deflation of the integral operator, i.e. the 
eigenvalues are removed. A more precise mathematical derivation of such an integral 
construction has been given by Hsiao & Kress (1985) for the case of an exterior two- 
dimensional Stokes problem. Kim & Karrila (199 1) and Pozrikidis (1 992) applied 
the method to a number of resistance and movement problems of solid and liquid 
particles in a Stokes flow. However in the case of viscous sintering, this method will 
not give the correct solution since we require that the holes can be filled up with fluid 
and vanish or that a hole can expand. Physically, this means that the porosity changes 
during sintering. Hence we have to model a sink inside those holes, cf. Batchelor 
(1967, p. 88). This sink contribution is formulated in a single integral equation which 
is applied as a constraint for the original equation and will be used to deflate that 
equation. 

In $2 of this paper we briefly describe the viscous sintering model and give the 
integral representation for a simply connected domain. Furthermore, we outline the 
construction of the integral representation for a multiply connected domain. This 
integral equation will be solved by the BEM. Some important details about this 
solution will be briefly mentioned too, In $3.1 the numerical correctness of the 
algorithm will be shown by a simple test geometry, viz. the shrinkage of a circular 
disk with a circular hole centred at the origin, since this problem can be solved 
analytically. Then we show a number of examples to demonstrate the usefulness 
of our method. In particular we consider some cylindrical packings. The latter 
simulations will provide a justification for the use of ‘unit problems’ in the theory of 
sintering. 

2. Problem description and solution 
In this section we will briefly summarize the mathematical model that describes 

viscous sintering. Secondly, an integral formulation will be derived that is capable of 
representing the solution for a multiply-connected fluid domain with shrinking holes. 
Some remarks are made on the numerical solution of the problem thereafter. 

2.1. Problem description 
Viscous sintering can be modelled by the Stokes creeping flow equations, see also 
Kuiken (1990). These Stokes equations are basically governing the flow and read in 
dimensionless form 

v 2 v - v p  = 0, (2.1) 
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with the continuity equation 

G. A. L. van de Vorst 

v. 2) = 0. 

Here u is the dimensionless velocity and p the dimensionless pressure. The stress 
tensor 7 for a Newtonian fluid is defined by 

In this paper, we apply the following (Neumann) boundary conditions which are valid 
in the case of viscous sintering, e.g. Kuiken (1990) and van de Vorst et al. (1992): 

T n  = K n ,  (2.4) 

where n is the outward unit normal vector of the boundary and K is the local boundary 
curvature. The boundary curvature is formulated as 

IC = V. n. (2.5) 

These equations can be solved uniquely for a fixed domain up to an arbitrary 
rigid-body translation and rotation, cf. van de Vorst et al. (1992). The displacement 
of the boundary is obtained by employing the boundary velocity solution u and the 
Lagrangian representation, 

dx 
- = u(x)  
d t  (x E r),  

where t is the dimensionless time. This equation expresses the movement of the 
rnaterial particles, i.e. we are following the trajectories of those particles. 

In the case of a multiply connected region, we assume that the normal component 
of the stress vector is proportional to the local curvature of the boundaries of the 
internal holes, cf. (2.4). Thus we exclude that the holes can move as a consequence of 
buoyancy or that there is an extra stress component due to a gas inside those holes. 
This is a reasonable simplification because in our problem formulation we did not 
include any gravity force since the sintering particles are very small. Hence the force 
due to gravity is neglected. 

2.2. Integral formulation 
From (2.6) it follows that we are interested only in the boundary velocity of the 
considered shape. Therefore this problem is ideally suited to being solved numerically 
by the BEM. To do this, we have to reformulate the problem as an integral equation 
over the boundary: we transform the Stokes equations with (Neumann) boundary 
conditions into an equivalent set of integral equations. We will start with the 
formulation for a simply connected domain and extend this equation to a multiply 
connected domain. 

Consider a simply connected domain surrounded by a closed curve r in the plane 
IR2. For the two-dimensional Stokes problem, the following integral formulation can 
be deduced, cf. van de Vorst et al. (1992): 

cijvj + /r qijvj d r y  = /r m i j n j  d r y .  
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Here cij ,  qij and uij are equal to respectively 

a, ,  x inside r rirj 
0, x outside r ; nR4 qij(X3.Y) = -rknk, 
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where r, = x, - y , ,  R = (rf  + r,”)i = Ix - yI and is the Kronecker delta. Many 
authors attribute the above integral equation to Ladyzhenskaya (1963), but actually 
it was Lorentz who derived this formulation in essence, back in 1896. The integral on 
the left-hand side represents the double-layer potential and the single-layer potential 
is the other integral. 

Equation (2.7) can not be solved uniquely since the homogeneous equation has 
three linearly independent solutions cpk,  i.e. the rigid-body motions 

cpk(x) = (dkl,dk2)T (k = 1,2) and q3(x )  = ( x ~ , - x ~ ) ~ .  (2-9) 
There are two main approaches to make (2.7) uniquely solvable. The first method is 
to add three additional variables that describe those rigid-body movements and, in 
order to achieve a full rank system, three integral constraints are included, cf. van 
de Vorst & Mattheij (1992b). The other method is to ‘remove’ the eigenvalue of 
the double-layer integral operator that causes this zero-space, i.e. -;, and construct 
a ‘deflated’ operator. This latter approach can be achieved by Wielandt’s deflation 
which is extensively discussed in Kim & Karrila (1991) and Pozrikidis (1992). The 
advantage of deflation is that the number of unknowns does not change and that we 
do not have to seek extra integral constraints: it is a purely mathematical approach 
which will be applied in this paper too. Only the resulting integral formulation is 
summarized, for more details we refer to the above-mentioned references. 

After ‘deflating’ (2.7), the following integral formulation is obtained for the simply 
connected domain : 

ct,v,(x) + /I qt,(X,Y)v, dry + Cpm JI v:v, dl- = JI %(X,Y)nl dry. (2.10) 

The functions cpk are actually divided by the square root of the length of the boundary 
curve r too. This is only for numerical reasons and therefore we will omit this in 
the integral formulations further on also. Now, there exists a unique solution o of 
the above equation since the homogeneous part of (2.10) is bijective, cf. Kress (1989, 
p. 43). Moreover, the obtained solution 0 also satisfies (2.7) because it can be shown 
that 

(2.11) JI q(vJ dT = 0. 

The next step will be the extension of the integral formulation to multiply connected 
domains. Let this domain be bounded externally by To and internally by rl,..,rM. By 
r we denote the complete boundary. If we formally apply the integral (2.7) to this 
multiply connected domain, we derive 

(2.12) 

where the normal of the inner boundary is also pointing outward into the fluid. 
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Again, the rigid-body motion functions (2.9) are a basis for the zero-space of the 
homogeneous part of (2.12). Using those functions, the above double-layer potential 
can be deflated in a similar way as was done for the simply connected domain, cf. 
Kim & Karrila (1991). 

Let cpmk(x) be the kth rigid-body movement of the hole enclosed by rm when 
x E rm, otherwise this function is taken equal to zero. The following deflated 
equation is obtained: 

G. A. L. van de Vorst 

M "  

lcuij(x,y)nj d r y  (x E rp). (2.13) 

The integral formulation that has been derived so far cannot describe the shrinkage 
or the expansion of the inside holes of the fluid domain. This can be illustrated by 
the following example shape, viz. a circular fluid disk with a circular hole centred at 
the origin. This flow problem can be solved analytically, cf. $3.1, and one obtains that 
the interior hole of the annulus shrinks and vanishes as time increases. Physically, 
this means that the porosity decreases during sintering. However, when we put this 
particular shape into the integral formulation (2.13) the null solution is derived, since 
the right-hand side is equal to zero. This zero equality follows from the fact that the 
curvature is constant and hence can be taken outside the integration, by employing 
(A7) of the Appendix. 

The reason that the integral (2.13) cannot be applied straightforwardly is due to 
the fact that the outer normal of the boundary is an eigenfunction of the adjoint 
of the double-layer potential integral (see also the Appendix). As was stated in 
Pozrikidis (1992, p. 110), the double-layer potential is capable of representing a flow 
that contains sinks/sources, but sometimes the adjoint double-layer potential's outer 
normal eigenvalue has to be removed. The method of deflating the boundary normal 
as described by both Kim & Karrila (1991) and Pozrikidis (1992) cannot be applied 
straightforwardly here, since they consider resistance and movement problems of solid 
and liquid particles in the fluid only. Therefore, we will briefly outline the further 
deflation of (2.13) that is used in this paper for the case of vanishing holes. 

In a similar way as the integral formulation (2.7) is obtained from the fundamental 
solution which represents a point force in an infinite two-dimensional fluid, cf. van 
de Vorst et al. (1992), an integral equation can be obtained that represents a sink at 
a particular place. Consider this equation for an arbitrary point, say xm, inside the 
area surrounded by the hole rm (m = 1, .  . . , M ) .  Hence we obtain M equations which 
after summation reduce to the following integral formulation that models all those 
sink contributions, i.e. 

= m=O 5lrn 

M . .  

(2.14) 

where 

and r r  = xr - yi and R" = Ixm - yI. Note that the same integral equation will be 
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obtained when there are sources modelled inside the hole areas. Hence (2.14) is suited 
to model both the shrinking and expansion of inner holes. The above integral is 
applied as a constraint on the solution of (2.13), i.e. we seek a velocity field u that 
satisfies both the integrals (2.13) and (2.14). 

The integral (2.14) can be applied in order to deflate (2.13) with respect to the 
outer normal in the following way, 

Kuij(x,y)nj dT + ni(x) iciijnj dT , (x E rp). (2.16) 

In the Appendix, it is shown that the solution of the above equation satisfies 
both the requirements (2.13) and (2.14). Hence this formulation provides the correct 
solution in order to simulate the sintering of multiply connected domains. 

2.3. Numerical solution 
As mentioned before, a boundary element method (BEM) is employed to solve (2.16). 
Details of this implementation for the case of a simply connected domain can be 
found in Van de Vorst et al. (1992) and van de Vorst & Mattheij (1992a,b). For 
multiply connected domains the discretization of the governing integral equations is 
straightforward too. 

Let the total boundary be discretized in say N nodal points. After applying the 
BEM to (2.16) we obtain a square full rank system of 2N x 2N algebraic equations 
that is denoted by 

H i  = G6. (2.17) 
Here ii and h are the velocity and surface tension (=rcn) respectively of all successive 
nodal points. Since the vector h is known, this system can be solved by simple 
Gaussian elimination with partial pivoting. 

After solving the above system of equations we have to perform a time step. More 
precisely, we actually have to solve a system of 2N nonlinear Ordinary Differential 
Equations (ODEs). Using (2.6), which describes the movement of the material 
boundary points, this system can be described by 

= H-'(2) G(2) 6(2), (2.18) 

where 2 is the vector of all successive nodes and the dot denotes the derivative with 
respect to the time. 

In the available literature about free creeping Stokes flows this system of ODEs is 
discretized by a simple forward Euler scheme or other explicit schemes. However, it 
appears that the above system of ODEs can be stiflfor certain type of shapes (e.g. 
shapes which have cusps) ; in such a case the time step in the forward Euler scheme has 
to be taken very small to obtain a stable method. Therefore, we have implemented a 
variable-step, variable-order Backward Differences Formulae (BDF) method to solve 
those ODEs. More details can be found in van de Vorst & Mattheij (1992~). 

The collocation points of the boundary are (re)distributed after a certain number 
of time steps. In van de Vorst & Mattheij (1992b), we proposed an algorithm for 
a fairly optimal node redistribution based on equidistributing the curvature of the 
boundary. The aim of that algorithm is twofold. Firstly, the number and position of 
the discretization points are optimized, which is important because the computational 

= m=O 5 (1. 1. ) 
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RGURE 1. The shrinkage of a circular disk with a circular hole centred at the origin. 

costs per time step are proportional to ( 2 N ) 3 .  Secondly, the algorithm treats regions 
with a large curvature ‘cusp’ so that the curvature of this particular region is preserved 
after the redistribution to avoid (numerical) oscillations in the computed velocity field. 

3. Results and discussion 
In this section we show the numerical results obtained by simulating a number of 

sintering geometries using the integral formulation described in the previous section. 
Since the driving force for sintering arises from the excess free surface energy, a 
particular shape will minimize its boundary during the deformation. Because of this, 
a two-dimensional fluid region transforms itself into a circle when time is increasing. 
From the incompressibility of the fluid it follows that during this deformation the 
total area of the domain has to remain constant. 

Firstly, we will compare the solution method to the analytical solution for the 
possibly most simple geometry: a circular disk with circular hole centred at the 
origin. Afterwards, we demonstrate the method for several other multiply connected 
domains. In particular, we will consider the sintering of particle packings that consist 
of a number of equal cylinders. It will be shown that those simulations provide a 
justification for the use of unit problems in the theory of sintering. All simulations 
have linear boundary elements applied and are carried out on a SUN Sparc+l 
workstation; the error in the total area of the domains was always less than 1% 
(which should be a conserved quantity). 

3.1. The sintering of a circular disk with a circular hole 
The first example that we consider is the evolution of a circular fluid disk with a 
circular hole centred at the origin. We denote by ro the radius of the outer circle and 
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FIGURE 2. The numerically found behaviour of the inner and outer radius of the circular disk, 

which matches very well with the exact analytical solution. 

by ri the inner radius. For this fluid domain, the solution of the Stokes equations can 
be found after transformation to cylindrical coordinates (r cos 8, r sin 8). One obtains 
for the radial velocity 

From this solution and the condition r, > ri, it follows that the interior circular region 
vanishes when time is increasing. 

From this analytical solution for the radial fluid velocity, we can deduce the exact 
solution for the inner and outer radius as functions of time also. Using both that 
the fluid surface remains constant and the Lagrangian representation (2.6) for the 
velocity, we obtain the following ordinary differential equations for the inner and 
outer radius respectively: 

We obtain for the solution of those equations 
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FIGURE 3. The shrinkage of a circular hole which is located close to the outer boundary of a 
circular disk. The hole remains in the fluid region and will disappear after a period of time. 

and 

t = 2(r0-&)-(4r:-3)f + ( 4 R , - 3 ) f .  (3.4) 

The initial outer radius (&) of the disk is taken equal to 1 and the inner radius 
(Ri) is set to 0.5. In figure 1 we have plotted the shrinkage of the circular hole as 
time increases. Both the initial geometry and the shape at time t = 0.7 are plotted. 
The evolution of the hole is also plotted after successive periods of 0.1: As can be 
observed, the internal hole shrinks and disappears after a certain period of time: the 
domain is becoming simply connected. 

In figure 2 are shown the exact solutions (3.3) and (3.4) compared with the 
numerically found shrinkage of the hole. As can be observed, the numerical and 
analytical solutions match very well. The moment that the hole disappears is also 
obtained by the simulation reasonably well: from (3.3) and using ri = 0, we derive 
that the hole is filled up exactly at t = 6 - 1 = 0.73; the latter approximation was 
found by the numerical code. 

Next, we consider the evolution of a similar circular hole that is situated close to 
the outer boundary of the fluid domain. The interesting question in this particular 
geometry is whether the hole is going outside the fluid, i.e. whether the domain will 
become simply connected. In order to simulate this problem, we have taken the initial 
geometry plotted in figure 3. The circular fluid disk has radius 1 and is centred at the 
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FIGURE 4. The shrinking of the hole surface from a circular disk that is centred at the origin (dashed 
line) compared to the hole area shrinkage of a similar sized hole that is situated close to the outer 
boundary (solid line). 

origin. For the circular hole we have taken an initial radius of 0.5 and the midpoint 
of the hole is situated at x2 = 0.45 on the vertical axis. Thus, the closest distance of 
the hole to the outer boundary is 0.05. 

In figure 3 the fluid domain at times t = 0(0.05)0.50 is shown. As can be seen, the 
hole remains in the fluid domain. A small disturbance in the neighbourhood of the 
closest part to the hole is the only effect on to the outer boundary. The hole remains 
in the fluid domain and is completely filled up by fluid at time t = 0.6. 

Another interesting phenomenon demonstrated by this geometry is that the shrink- 
age rate of this particular hole is faster than a similar hole that is centred at the 
origin. Note that those geometries contain both the same amount of fluid and an 
equally sized interior hole. Only the position of the centre of these holes differs. In 
figure 4 the interior area shrinkage of both holes is plotted. As can be seen, the 
shrinking rate of the hole that is positioned closest to the outer boundary proceeds 
faster than the hole of the other fluid domain. An explanation for this difference 
is that for a centred hole all the fluid has to be moved in the direction of the origin. 
In the other case, there is not much flow occurring in the bottom part of the shape; 
the hole is mainly filled up by fluid flow that appears in the upper part of the 
domain. 

3.2. The sintering of an elliptic hole 
The second example is the deformation of a circular disk with an elliptic hole centred 
at the origin. This particular example is chosen since Hopper (1991) analytically 
solved the shrinkage of an elliptic hole in an infinite region of fluid. From that 
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FIGURE 5. The shrinkage of a circular disk with an elliptic hole centred at the origin. 
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FIGURE 6. The axial ratio ( x * / x ~ )  of the inner ellipse, which is decreasing as a nearly linear 

function of time. 
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FIGURE 7. The shrinkage of a circular disk with an elliptic hole centred at the origin when the ends 
of the initial ellipse are close to the outer boundary. 

solution, he found that an elliptic hole shrinks at a constant rate with a constant 
aspect ratio. Here, we approximate the infinite region by a circular disk. The radius 
of the disk is set equal to 1 and the ellipse is described by 9 4  + 25x; = 1. 

In figure 5 we have plotted this particular initial shape and also the shape at time 
t = 0.4. Furthermore, the deformation is shown at times t = 0(0.05)0.4. The latter plot 
shows that the shrinkage of the inner boundary proceeds as an elliptic hole, which 
is similar to what was obtained by Hopper (1991) for the infinite fluid region case. 
In figure 6 we show the development of the axial ratio (xz/xI) of this inner ellipse as 
a function of time. As can be seen in the figure, this is an almost linear decreasing 
function of time, even when the hole has reached the moment of vanishing. This 
result differs from the behaviour that Hopper (1991) derived for the elliptic hole in 
an infinite region, i.e. he found a constant aspect ratio during the evolution. 

This linear decreasing of the axial ratio is valid only when the ends of the ellipse 
are not to close to the outer boundary. This is illustrated in figure 7. Here, we have 
plotted the evolution of an enlarged elliptic hole in a similar sized circular disk at 
times t = 0(0.05)0.6. The elliptic hole is described by the equation ($)'x:+($)'x~ = 1, 
thus the starting axial ratio is equal to that of the elliptic hole of figure 5. The figure 
shows that the shrinkage of the interior hole proceeds as ellipse-like shapes too. This 
plot illustrates also that an elliptic hole, if large enough, will shrink to a line contact 
at later times. 

The axial ratio of this elliptic hole does not decrease at a linear rate as can be 
observed from figure 8. This different behaviour can be attributed to the influence 
of the outer boundary at the ends of the ellipse. We already observed such an effect 
of the outer boundary on the hole deformation in the previous subsection for the 



680 G. A.  L. van de Vorst 

0.6 

0.5 

0.4 

x2 

X1 
- 

0.3 

0.2 

0. I 
0 0.1 0.2 0.3 0.4 0.5 0.6 

t 
FIGURE 8. The axial ratio (XZ/XI) of the inner ellipse of figure 7 as a function of time. This ratio 
does not decrease at a linear rate since the outer boundary influences the shrinking of the hole. 

shrinkage rate of an eccentric-circular annulus. Therefore, an explanation of this 
effect can be obtained by using similar arguments as mentioned in that subsection. 

3.3. The sintering of cylindrical packings 
Thus far, the fluid domains that we have considered are shapes with a moderately 
well-behaved boundary curvature. It is also possible to simulate the evolution of 
geometries with a more extreme boundary curvature. In order to demonstrate this, 
we consider some cylindrical packings. In those packings, the cylinders already make 
contact with each other. 

In sintering literature, the rate of contact between two coalescing cylinders may be 
quantified by the contact radius and the touching region near the neck. This contact 
radius, say p, is a measure of how strong a sintering compact already is. When the 
contact radius is small, a smaller force will be necessary to break the contact between 
both cylinders than at later stages of the sintering process. When a cell structure is 
determined that may be considered as a representation of a sintering compact, the 
coalescing rate can also be used to obtain a better phenomenological insight into the 
shrinkage of such a macroscopic system. As we mentioned in the introduction, the 
contact radius development can be theoretically studied by unit problems. Here, in 
particular, we consider the unit problem of the coalescence of two equal cylinders. 
The simulations below will show that such a theoretical simplification is justified in 
order to describe the development of a more complex sintering compact. 

In the following examples we have set the initial radii of all cylinders equal to 
0.5. The contact radius between two touching cylinders was initially taken equal 
to 0.095 for all neck regions. Furthermore, we used the analytical solution for the 
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FIGURE 10. The deformation of four regular packed cylinders. 

coalescence of two equal cylinders to approximate the neck regions of the initial 
shape. This analytical solution is derived by Hopper (1990, $4.4). However, this 
particular solution is valid for the coalescence of two equal cylinders with both initial 
radii ;a. It is straightforward to obtain the solution for the coalescence of two 
equal cylinders with an arbitrary initial radius, cf. van de Vorst & Mattheij (1992b). 

In figures 9-12 we plot the deformation of three to six symmetrically placed equal 
sized cylinders with a hole in the interior of the domain. All initial shapes are 
constructed so that the mid-points of the cylinders are equally distributed on a circle 
centred in the origin. The radius of this circle is chosen so that the distance between 

23 FLM 251 



682 G. A. L. van de Vorst 

FIGURE 12. The deformation of six regular packed cylinders. 
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FIGURE 13. The development of the contact radius @) between two cylinders of the packings of the 

figures 9-12 compared with the exact neck growth of two coalescing cylinders. 

two successive cylindrical mid-points is equal to the exact shrinkage of two coalescing 
cylinders. 

An interesting question is the behaviour of the neck growth between two touching 
cylinders of these packings compared with the exact contact radius of two coalescing 
cylinders. In figure 13 is shown the development in time of the contact radius for 
all the four packings. In this figure, the contact radius is plotted from the neck 
regions that are situated along the positive vertical axis. The exact neck radius for 
the coalescence of two cylinders with initial radii equal to 0.5 is also plotted. 

From this picture we see that the neck growth for all the four cases is of the same 
rate and almost equal to the contact radius development of two coalescing cylinders. 
From this observation we conclude that the sintering of the above packings, in fact, 
can reasonably be described by considering the model of the coalescence of two equal 
cylinders. This illustrates the importance of the exact analytical solution for this 
particular coalescence as has been obtained by Hopper. Furthermore, we observe that 
there is even no change in the coalescing rate at times when the internal holes have 
almost vanished. 

These numerical experiments may also give some justification of the modelling of 
the densification of powder compacts based on such unit problems. An example of 
such a model based on unit problems that describes the deformation of a sintering 
compact was recently presented by Jagota & Dawson (1988b). In that model, the 
particle packing is modelled as a framework of links between touching spheres, and 
the development of those links are described by using the behaviour of the unit 
problem of two coalescing spheres separately. 

The shrinking of the interior holes from the packings of figures 9-12 shown in 
23-2 
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FIGURE 14. The shrinking of the interior hole area from the packings of the figures 9-12. The hole 

area is normalized by the initial hole surface. 

figure 14. In this graph, the interior hole area is normalized by the initial hole surface. 
From this figure we observe that all the holes are monotonically decreasing in time. 
They even initially decrease at a same rate. This latter observation can be clarified by 
noting that in the initial stage there is only large flow activity in the neighbourhood 
of the touching area between two successive cylinders which will not influence the 
hole surface much. 

Up to now, the shapes considered were all doubly connected domains. In order 
to demonstrate the method for a really multiply connected region, we consider the 
packing of a 4 x 4 array of cylinders. Again all the contact radii are set equal to 
0.095. In figure 15 we show the sintering of this particular compact. In the picture on 
the right of this figure is shown the deformation at equal periods of 0.05. It can be 
seen that the holes are moving further into the interior of the fluid. 

In figure 16 we have set the initial neck radii in the vertical direction equal to 0.3. 
Because of this, the sintering is faster. As can be observed in the right plot of this 
figure, the holes deform into an ellipse-like shape. When we compare the movement 
of these holes with the movement in figure 15, it can be seen that they are situated 
almost at the same place at the final time. This implies that the movement is faster. 

4. Conclusion 
The examples shown in the previous subsections illustrate that with the method 

presented we are able to simulate all kinds of two-dimensional multiply connected 
domains. The main limitation in these simulations is the computer resources; also we 
cannot yet deal with cases where boundaries touch during a simulation. 
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FIGURE 15. The sintering of a regular 4 x 4 array of cylinders with initially equal contact radii 
between all cylinders. 

FIGURE 16. The sintering of a 4 x 4 array of cylinders. The initial contact radius between the 
cylinders in the vertical direction is set more than three times larger than in the horizontal 
direction. 
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It is obvious that some experimental verification has to be performed to justify this 
model. Starting in two dimensions, such experiments should consider the sintering 
of a packing of well-controlled glass fibres that can be compared with the numerical 
simulation of that particular packing. 

Recently, Korwin et al. (1992) performed experments in which they considered 
the sintering of two equal sized glass fibres. The results obtained were compared 
with Hopper's analytical solution and look very promising. Because of this, these 
experiments also provide a (little) justification of our numerical approach. 

The author thanks Dr C. Pozrikidis of the University of California at San Diego 
for some valuable comments concerning this paper. Professor R.M.M. Mattheij is 
also thanked for critically reading the manuscript. This research was supported by 
the Technology Foundation (STW). 

Appendix A. Justification of the integral formulation employed 
In this appendix we show that the solution 8 of the deflated integral formulation 

(2.16) satisfies both the requirements (2.13) and (2.14). We will achieve this result 
by describing the single- and double-layer potentials involved in terms of functional 
operators. The precise mathematical justification of what follows will be omitted. 
The reader may ignore the functional operators too and consider those as matrix 
operations. 

Let G, be the single-layer potential operator with a continuously varying density 
$b) subjected to the boundary r,, i.e. 

The double-layer potential H, with density +(j) is defined analogously, 

where It" denotes the normal to rm pointing out of the fluid. Moreover, the boundary 
r,,, is followed in a counter-clockwise direction. The functional inner product is 
defined in the usual way, 

( 4 y + ) m  = 1 4iVidr, (A 3) 

($,A+) = (A*4&L (A 4) 

r, 
and the adjoint of an operator A is defined as, cf. Kreyszig (1978), 

where the asterisk denotes the adjoint. Here the adjoint of the operators (Al)  and 
(A2) can be found by transposing the indices j and k and swapping the arguments 
x and y, i.e. 

Hence G is a selJladjoint linear operator. Furthermore, we require the following 
identities that apply on the potentials in relation to the outer normal: 

ni, x inside r 
0, x outside r ,  (A 6) ( H n ) i  = ( - n j ( X ) H d ) i  = { ?ni, x on r 



Stokes flow with shrinking holes applied to viscous sintering 687 
where d = (dlj,~2j)T. Hence the outer normal n is an eigenfunction of the adjoint 
operator H .  For the single-layer potential it can be found that 

which is derived by applying both the divergence theorem of Gauss and that 
ui = ( u ~ ~ , u ~ ~ ) ~  is the fundamental solution of the Stokes problem due a point force 
in the e'-direction. Hence the incompressibility condition is fulfilled. The projection 
operator P, is defined by 

3 

k=l 

which is a self-adjoint operator. The integral formulation (2.13) can now be written 
in the above operator notation as 

M M 

(;I + H~ + p0) 00 - C ~ ~ t +  = C ~ ~ i i  (x E To), 

H ~ ~ O  - c ~ ~ v j  + (;I + P,) trm = c G,V (x E r,), 
(A81 

j=l j=O 

M M 

j=1 j=O 

where v", 6" = icnm are the velocity and tension function respectively of the boundary 
rm and I is the indentity operator. At a similar way, we denote (2.14) by 

M M 

j= 1 j=O 

where 

G4 = lma j+ jd ry ,  hm# = ~ m ~ j ~ j d r y ~  

and r,,, is considered in a counter-clockwise direction. From (AS) and (A9), we 
obtain for the deflated formulation (2.16) 

M 

(;I + Ho + PO + nobo)vo - (Hj + nohj)d 
j=1 

(A 10) I 
M 

= (GI + n'gj) d (x E To) 
j=O 

(Ho+n"ho)aU-F (Hj+n"hj)d + (f1+Pm)vm 
j=1 

M 

= c (G' + nmgj)Y (x E r,) 
j=O 

In order to prove that the solution of (A 10) satisfies both the formulations (A 8) and 
(A 9), it is sufficient to show that the following equality is fulfilled: 

M 

w := gobo - houo +C(gj&'  + hjd) = 0. (A 11) 
j= 1 
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The validity of the latter equation can be shown by taking the inner product of (A 10) 
with respect to the outer normal, i.e. (nm, .)m. In order to perform this we remark that 

G. A. L. van de Vorst 

(d,G,b")j  = (GJd,b") ,  = (Gjd ,b") ,  = 0, (A 12) 
which is deduced from the self-adjointness of G and (A7). Note that we have 
only interchanged the integration variables. For the inner product of the rigid-body 
motions with respect to the outer normal, it can be shown that 

(A 13) 
Now, we take the inner product of (A10) with respect to the outer normal of ro. 
Using (A 6),  (A 12) and (A 13), it follows that 

($"",n")m = 0 (k = 1,2,3), (m = 0, ..,M). 

M 

WLO = i(n0,~O)o + (n',Ho~O)o - C ( n o , H j d ) o  
j = l  

M 
- 1  0 0 - 5 (n , v ) O  + (Hi no, uo)o - (Hi no, d) j 

j =  1 

M 

j = l  

where LO is the curve length of the outer boundary To. Next, the inner product is 
taken of (A 10) with respect to the outer normal of r,,, (m = 1, .., M ) ,  we obtain 

M 

wL, = (nm, Ho v0), - C ( n m ,  H j  d ) ,  + 5 (nm, vm), 
j=l 

M 

= ( ~ : , n ~ , v O ) ~  - C ( ~ ; n ~ , u ' ) ~  + ; ( n m , t ~ m ) ~  

- 1  - -5 ( n m ,  vm)m + ; ( n m ,  v m ) ,  = 0, 
j= 1 

(A 15) 
where L, is defined analogously. From the latter equality it follows that w has to 
be equal to zero; hence the solution of the deflated formulation (A 10) satisfies both 
the integrals (A 8) and (A9). Furthermore, the inner product (A 14) reduces to the 
incompressibility requirement for the flow field. 
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